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S A F E T Y  F A C T O R S  A N D  R E L I A B I L I T Y  O F  L A R G E  S T R U C T U R E S  
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In current engineering practice, the strength characteristics of large structures in service - -  including the safety factor 

(SF) - -  are determined by calculation at the design stage [1, 2] and are checked in tests of models. However, if no allowance 

is made for the scale factor, the application of  model tests to the full-scale object may reduce the safety factor [3-5]. Such 

reductions may have serious consequences, as is shown by the following examples. 

The authors of  [61 proposed an original design for a spherical pressure vessel (pressures up to 50 MPa) with a capacity 

of several thousand cubic meters. The vessel has a multilayered shell, each layer consisting of  butt-joined plates. Only the joints 

between the outermost and innermost elements are welded, to ensure that the vessel as a whole is hermetic. The necessary 

strength is obtained through friction between the layers. It is known that the use of multilayered or coiled pipes on individual 

sections of pipelines makes it possible to arrest propagating cracks and reduce the seriousness of  accidents. Thus, a multilayered 

design is more desirable than a single-layer design from the viewpoint of preventing brittle fracture. This has been shown by 

the numerous tests involving the severe shock loading of pressure vessels [71. 

If a vessel does suddenly fail, what is the reason [6]? A simple calculation shows that with a capacity of 5000 m 3, the 
brittle failure of a vessel holding a diatomic gas at a pressure of 50 MPa would be equivalent to the explosion of 150 tons of 

trotyl (TNT), i.e. would be a catastrophe. The gravity of such an event and the difficulty of  experimentally determining the 

actual safety factor of a full-scale pressure vessel [6] make it incumbent that the reliability of  the structure be carefully 

substantiated. 

Let us discuss how vessel strength was verified in [6]. As an example, we performed calculations for a vessel operating 

at a working pressure P = 20 MPa. The shell of a vessel with an internal radius R o = 5 m has n = 40 layers of steel with a 

yield point ~ry -- 350 ram. The thickness of the welded innermost t 1 and outermost t, layers is 32 mm, while each intermediate 

layer has a thickness t = 5 ram. According to calculations performed in [6], the given shell, with a total thickness 5 = 254 ram, 

is equivalent in strength to a monolithic shell with a safety factor for ay equal to 1.5. It should be noted that brittle fracture of 

the given vessel would be equivalent to the explosion of  6 tons of  TNT.* 
Experimental studies of the strength and reliability of the pressure vessels in [6] were conducted on four hemispherical 

models. The ratio R o of  the models and the prototype was 1:33 (models 1 and 2) and 1:17 (models 3 and 4), but the models 

and prototype were not geometrically identical. If we take the parameter UR o as the criterion of  geometric similitude, then model 

1 is found to be closest to the prototype. This model, with UR o = 5.3% (versus 5.1% for the prototype), has a steel shell of 

eight layers 1 mm thick. The theoretical and actual breaking pressures coincide but remain 44% below the breaking pressure 

of an equivalent monolithic shell. With allowance for the foregoing, the results of the model tests leave no doubt as to the 

reliability full-scale versions of  the given vessel if it is designed with a safety factor of 2.4 for ultimate strength. In fact, if we 

reason that the load-carrying capacity (strength) of a structure is determined unambiguously by its stress-strain state alone, then 

two geometrically similar objects (the model and the prototype) should fail at the same stresses when loaded in the same manner. 
However, this has yet to be confm'ned experimentally. 

It is known from studies of the danger of  explosion of geometrically similar steeI pressure vessels [8-12] that if the 

smaller vessel fails with the plastic strain ebl when subjected to shock loading, then (other conditions being equal) the larger 

vessel will fail with a strain eb2 < ebb The higher the modeling coefficient k, the lower eb2 up tO the transition of the material 

*The most powerful atom bombs in existence during World War contained 1 ton of TNT. 
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to the elastic region. Failure in this case will generally be catastrophic and of a brittle character (even though the material is 

still a ductile steel). It is just this type of failure that is experienced by spherical steel vessels [10, i1]. 

The possibility of  a substantial reduction occurring in the strength of geometrically similar pressure vessels with an 

increase in size was examined in [3-5]. This phenomenon is energy-related, since failure (separation of the vessel into parts) 

is the result of  work done by elastic energy stored up in the vessel while under load.* This energy is proportional to the volume 

of the material - L 3 (where L is a characteristic dimension of the object), while the fracture work is proportional to the fracture 

surface - L  2. Thus, with an increase in L, elastic energy increases more rapidly than the amount of  this energy expended on 

fracture. This results in the breaking stress ab being heavily dependent on L 

a b - -  L - l / 2 .  (1) 

If a model fails at tr b ~ oy in accordance with (1), then when it is enlarged to full scale, i.e. enlarged by the factor k 

(with the observance of  geometric similitude), the vessel will fail at a stress which is x/~ times lower. This effect of the scale 

factor on strength is referred to as the energy scale effect (SE) or strong SE [3]. Neglect of this effect - -  especially the strong 

SE - -  by designers of  pressure vessels makes the projected safety factor highly unreliable (and negates it completely within the 

context of the above energy criterion of failure). The reliability of the vessel itself thus becomes questionable. 

Relation (1) is only a necessary failure condition, being a consequence of the balance of  elastic strain energy and fracture 

work. A sufficient condition of  failure might be the presence of a defect or a region more heavily loaded than other regions 
(examples are zones containing stress raisers, Griffith cracks, etc.). Of course, careful design and construction of  the vessel and 

the use of a multilayered shell will improve its strength characteristics and reliability and increase load-carrying capacity. 

However, in principle, if the object is flawed, it will be weaker than its smaller model. With an increase in the dimensions of 

the model to full scale, the fracture strain enters the elastic region, and fracture changes from ductile to brittle. 

Thus if scale effects (especially strong SEs) are not taken into account in the design of  large structures, their theoretical 

safety factor may be unreliable or - -  the results of calculations notwithstanding - -  may be nonexistent. In the latter case, the 

object is destined to fail sooner or later, and experience shows that this failure will occur suddenly at unexpectedly low stresses, 

having catastrophic consequences. 

Do the above findings mean that, in accordance with (1), the strength of a pressure vessel or other object must 

necessarily decrease as its size is increased? Not at all. There are ways to circumvent this, and we will discuss them below. 

The first approach.is to replace a large vessel by N geometrically similar small vessels with linear dimensions that are 

N m times smaller than those of  the prototype. In this case, with material costs and the total useful volume remaining the same, 

tr b will increase by a factor N 1/6 (for example, with N = 103, o b will roughly triple). However, such an approach is hardly 

practicable, since it entails a substantial increase in vessel fabrication and operating costs, in addition to requiting a larger work 

a r e a .  

The problem is considerably easier to solve if the vessel has a cylindrical shape. For such a vessel with radius R and 

height H, the hoop stresses will be twice the axial stresses - -  regardless of the value of H/R. It thus becomes unnecessary to 

change H if the original vessel is replaced by N small vessel-tubes. This means in turn that for the same material costs and total 

useful volume of  the vessel-tubes, tr b will increase by a factor N TM and gross volume will increase 10% (if the tubes are 

compactly arranged). To illustrate, with N = 200, the radius of one vessel-tube r would be 1/14 the radius of  the prototype (with 

R = 5 m and r = 0.36, for example) and % would increase by a factor of four [according to (1)]. Thus, other conditions being 

equal, replacing a cylindrical pressure vessel by a bundle of tubes would significantly increase the load-carrying capacity and 

reliability of  the structure and make it safer (the vessel-tubes would work and fail independently). The fact that the component 

parts of such a vessel would be identical would allow their configuration to be optimized for the given service conditions and 

would permit experimental determination of  the actual safety factor. Finally, as the vessel in [6], a vessel of  the type just 
described could be built on site. 

A second approach to resolution of the problem being discussed is the use of oriented fiber composites. It was shown 

in [13, 14] that no role is played by the energy scale effect in the failure of such materials (this applies in particular to glass- 

fiber-reinforced plastics). The fact is that the main load-bearing elements of a glass-plastic are fibers, the diameter of which d = 

const is independent of  the size of  the object. Thus, in accordance with (1) (where L -= d), tr b = const. This accounts for the 

*Since the time to failure is relatively short, the work done by external forces will be unimportant in the given case. 
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absence of  an energy scale effect. Whereas for metallic structural materials the most dangerous event is brittle fracture in the 

elastic swain region - -  where fracture toughness KIr is low --  elastic deformation and brittle fracture are natural phenomena for 

an individual glass fiber. In this case, even the failure of a large number of fibers simultaneously is not catastrophic for objects 

made of fiber composites [14]. In accordance with (I), for glass fibers in particular it is possible to substantially increase % by 

decreasing d [3, p. 75], despite the negligibly low KIe of glass (compared to steel). For example, for glass fibers VM-1 with 

d = 10 #m, % = 4.2 GPa [15], i.e, % is considerably higher than for steels. Here, the density of the glass is one-third the 

density of steel. 

Some observations must be made in regard to structures made of multilayered and coiled materials. Their main load- 

bearing element is a layer whose thickness t = const, regardless of the overall size of the object. In terms of their reaction to 

loading, these materials are similar to composites (particularly glass-plastics) having fibers with d = const. They differ from 

composites in two important respects. 

1. For a structure to function properly, the tensile stresses in it should not exceed ay. The value of  ay is low compared 

to the % of glass fibers and, in contrast to such fibers, has an upper bound. For glass fibers, the value of % can be increased 
significantly by decreasing d. 

2. Due to the absence of a matrix, the layers of material are acoustically coupled. In a glass-plastic, conversely, there 

is almost no coupling of the fibers and matrix (their acoustic resistances differs by approximately one order). Thus, as in 

monoliths, the energy scale effect may be manifest in multilayered and coiled materials. However, this effect will be 

considerably weaker than in a monolith [16]. 

According to data from numerous studies [3, 8, 12, 16, 17], two failure conditions - -  necessary and sufficient --  are 

satisfied in the case of  severe shock loading. According to [17], a fourfold increase in the diameter of  geometrically similar one- 

layer steel tubes would lead to a decrease in e b by a factor of 2-2.5 if the tubes were subjected to blast loading. Similarly, it 

was reported in [16] that a tenfold increase in the diameter of a coiled tube would decrease e b by a factor of 1.5. Moreover, 

since a decrease in relative elongation with an increase in specimen size has been observed in static tests [3, p. 74], similar 

results might be expected to be seen under static loads in service. Thus, returning to [6], we should keep in mind that even if 

layer thickness remains unchanged and the number of layers is increased by the factor 33 x 8, when the results of  tests with 

model 1 are applied to a full-size vessel, the scale factor might cause e b to decrease to the elastic strain region, i.e., might result 

in brittle fracture. 

Consequently, it is improper to evaluate the strength of large objects on the basis of results of model tests without 

allowance for the scale Nctor: even with the use of a multilayered structure and a large safety factor, manifestation of the energy 

SE can significantly reduce or completely eliminate the actual safety factor of the object. 

Current methods of  guaranteeing the necessary safety factors in large structures are based on the selection of certain 

materials for the load-bearing elements. Embrittlement of  the material accompanying an increase in the size of  the object is 

accounted for on the basis of  results of  fracture-toughness tests of full-thickness specilr~ens or displacements of  the critical 
brittleness temperature with a change in specimen dimensions. However, as was shown in [18], neither do tests such as these 

guarantee safety against brittle failure. The use of  a multilayered structure also does not necessarily solve the problem: on the 

one hand, such materials cannot be used in certain applications; on the other hand, as was shown above, they are not free of 

the scale effect. It is recommended that oriented fiber composites be used in such applications, but there is one more approach 

that can be taken when this is not possible or when traditional metals must be used. 
Assuming that the necessary and sufficient fracture conditions are met in the case of  severe shock loading, we can 

evaluate the fracture conditions for the fuU-scale object by loading 2-3 models of  different sizes to failure. Let us illustrate this 

by using the example of  the explosive failure of  geometrically similar spherical steel vessels. For simplicity, we will write the 

equation describing its deformation in idealized bilinear form 

0 = E~. at. 0 ~; 00, 

O = o o + K ( e - o 0 / K )  at. o > o 0 ,  

where a o is the idealized yield point; E and K are the elastic and swain-hardening moduli. If  the radius of the vessel R is small 

enough so that part of  the kinetic energy of the vessel is expended on plastic flow before fracture, then it is not hard to find the 

relationship between R and e b: 

Ry/R = [(i - K/E) + K%/(E~y) ]2. (2) 
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Here, ey and 1~ are the strains at the yield point and the vessel radius in the case of fracture at the yield point. When the vessel 
fractures in the elastic region (K = E), Eq. (2) takes the form 

Ry/R = (~b/~)  2. (3) 

Equations (2) and (3) make it possible to find the fracture strain Cbl of a test model of radius R = R 1 and, with known 
E, K, and ey, evaluate the limiting radius Ry; at R > Ry, the fracture of the vessel will be brittle in character. The effect of 
strain rate and material temperature on a can probably be ignored in this case as a first approximation, considering the fact that 
these factors yield small corrections of different signs. For example, as was shown in [19], for vessels of steels 25 and 22k with 
/i/R = 0.2, the estimated value Ry = 0.2 m. This result is consistent with the experimental data. 
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